Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 333: 121962, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494219

RESUMO

Ulva are hardy green seaweeds that contain the sulfated polysaccharide ulvan and grow in two distinct morphologies: foliose and tubular. The authors hypothesise that ulvan from tubular species are more structurally complex than ulvans from foliose species. Herein, using standardised methods, the glycosyl linkage positions and sulfate ester substitutions of constituent monosaccharides of ulvan isolated from foliose (U. lacinulata and U. stenophylloides) and tubular (U. prolifera and U. ralfsii) species of Ulva were investigated. Comparison of native ulvans with 80 and 100 °C desulfated counterparts indicated that 4-linked rhamnose is predominantly 3-O-sulfated in all four ulvans. Ulvans from the foliose species predominantly contained →3,4)-Rhap-(1→, →4)-GlcAp-(1→ and →4)-IdoAp-(1→, collectively accounting for 67 to 81 mol% of the total linkages. In contrast, these same linkages in ulvans from the tubular species only collectively accounted for 29 to 36 mol%. Instead, ulvan from tubular species contained a combination of →2,3,4)-Rhap-(1→, terminal Rhap-(1→, →4)-GlcAp-(1→, →4)-Xylp-(1→, and/or →4)-Galp-(1→ in high proportions; some of the latter three residues were also likely O-2 sulfated. The results presented here suggest that ulvan from foliose species are predominantly unbranched polysaccharides composed of repeat disaccharides while ulvans from tubular species contain a greater diversity of branch and sulfate substitution locations.


Assuntos
Alga Marinha , Ulva , Ulva/química , Polissacarídeos/química , Sulfatos/química
2.
Carbohydr Polym ; 318: 121066, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479460

RESUMO

Thalli of the endemic epiphytic New Zealand red seaweed Pyrophyllon subtumens are known to contain a high level of xylose and a notable amount of arabinose but the extracted polysaccharide has not been characterised. The linkage/substitution of individual sugars within the water-soluble polysaccharide extract and various derivatives were determined by chemical and spectroscopic methods. No 3-linked sugars nor any d-galactose were found, which excluded agar-, carrageenan- or mixed 3-linked/4-linked ß-d-xylan-type polysaccharides found in many other red macroalgae. Instead, the polysaccharide backbone contained predominantly 4-linked ß-d-xylopyranosyl, 4-linked 3,6-anhydro-l-galactopyranosyl and 4-linked l-galactopyranosyl units. Some of each type of sugar were sulfated at various positions. Some xylosyl units were substituted at the 2- or 3-position with l-arabinosyl units. The polysaccharide is complex and likely contains a range of structures. However, partial sequencing was successfully used to recover and identify a novel disaccharide 4-O-d-xylopyranosyl-3,6-anhdydro-l-galactopyranose, which indicates a unique →4)-ß-d-Xylp-(1 â†’ 4)-3,6-anhydro-l-Galp-(1 â†’ repeat unit in the polysaccharide.


Assuntos
Rodófitas , Alga Marinha , Dissacarídeos , Polissacarídeos , Carragenina , Galactose
3.
Carbohydr Polym ; 282: 119081, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123736

RESUMO

Commercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer. Statistical analysis of the disaccharide compositions placed these batches in three categories: group A had high GlcNAc and GlcNS, and low GlcN typical of HS; group B had high GlcN and GlcNS, and low GlcNAc; group C had high di- and trisulfated, and low unsulfated and monosulfated disaccharide repeats. These batches could be placed in the same categories based on their 1H NMR spectra and molecular weights. Anticoagulant and growth factor binding activities of these HS batches did not fit within these same groups but were related to the proportions of more highly sulfated disaccharide repeats.


Assuntos
Anticoagulantes/química , Heparitina Sulfato/química , Mucosa Intestinal/química , Animais , Dissacarídeos/análise , Fator Xa/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Suínos
4.
Int J Biol Macromol ; 194: 571-579, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813787

RESUMO

Ulvans from Ulva ohnoi, Ulva tepida and Ulva prolifera were extracted under mild acidic conditions, isolated and their composition and structure determined. The ulvans contained mostly rhamnose (31.6-46.7 mol%) and glucuronic acid (26.6-37.5 mol%), with smaller amounts of xylose (3.4-10.4 mol%) and iduronic acid (3.1-7.6 mol%). In addition, the ulvan samples also contained galactose (4.4-26.0 mol%). Glycosyl linkage analysis showed that ulvan from U. ohnoi contained mostly →4)-GlcpA-(1→ and →3,4)-Rhap-(1→. Preparation of partially methylated alditol acetate standards of idose showed that U. ohnoi contained →4)-IdopA-(1→. In addition to these residues, glycosyl linkage analysis of U. tepida and U. prolifera showed the presence of →2,3,4)-Rhap-(1→, →4)-Xylp-(1→, →2,4)-GlcpA-(1→ and →3,4)-GlcpA-(1→. These two species also contained galactose linkages. These data, together with nuclear magnetic resonance (NMR) spectroscopy indicated that U. ohnoi comprised mostly of type A3S ulvanobiuronic acid repeats [→4)-ß-D-GlcpA-(1→4)-α-L-Rhap3S-(1→], together with smaller amounts of type B3S ulvanobiuronic acid repeats [→4)-α-L-IdopA-(1→4)-α-L-Rhap3S-(1→] and ulvanobiose (U3S [→4)-ß-D-Xylp-(1→4)-α-L-Rhap3S-(1→]). NMR spectra of U. tepida and U. prolifera showed resonances not detected in U. ohnoi, highlighting the complexity of the ulvans from these species. Regardless of the structural diversity of the ulvan samples there was very little antioxidant or inhibitory activity detected on enzymatic processes investigated.


Assuntos
Polissacarídeos/química , Ulva/metabolismo , Antioxidantes/química , Estrutura Molecular
5.
Carbohydr Polym ; 264: 118010, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910714

RESUMO

Green seaweeds of the genus Ulva are rich in the bioactive sulfated polysaccharide ulvan. Herein we characterise ulvan from Ulva species collected from the Bay of Plenty, Aotearoa New Zealand. Using standardised procedures, we quantified, characterised, and compared ulvans from blade (U. australis, U. rigida, U. sp. B, and Ulva sp.) and filamentous (U. flexuosa, U. compressa, U. prolifera, and U. ralfsii) Ulva species. There were distinct differences in composition and structure of ulvans between morphologies. Ulvan isolated from blade species had higher yields (14.0-19.3 %) and iduronic acid content (IdoA = 7-18 mol%), and lower molecular weight (Mw = 190-254 kDa) and storage moduli (G' = 0.1-6.6 Pa) than filamentous species (yield = 7.2-14.6 %; IdoA = 4-7 mol%; Mw = 260-406 kDa; G' = 22.7-74.2 Pa). These results highlight the variability of the physicochemical properties of ulvan from different Ulva sources, and identifies a morphology-based division within the genus Ulva.


Assuntos
Polissacarídeos/química , Alga Marinha/química , Ulva/química , Parede Celular/química , Ácido Idurônico/análise , Peso Molecular , Análise Multivariada , Nova Zelândia , Polissacarídeos/isolamento & purificação , Reologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfatos/química
6.
Int J Biol Macromol ; 150: 839-848, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057850

RESUMO

Ulvan, a sulfated polysaccharide extracted from the green seaweed genus Ulva, has bioactive properties including an immunomodulating capacity. The immunomodulatory capacity of ulvan from Ulva ohnoi, however, has not been assessed in detail. We depolymerised purified ulvan from U. ohnoi to obtain a range of molecular weight fractions (Mw 7, 9, 13, 21, 209 kDa), which were characterised by constituent sugar analysis, SEC-MALLS, and NMR. Ulvan fractions contained 48.8-54.7 mol% rhamnose, 32.5-35.9 mol% glucuronic acid, 4.5-7.3 mol% iduronic acid, and 3.3-5.6 mol% xylose. 1H and 13C NMR was consistent with hydrolysis occurring at the anomeric centre without further modification to the oligosaccharide structure. The in vitro immunomodulatory effect of ulvan fractions was quantified by measuring levels of inflammatory-mediating signalling molecules released from LPS-stimulated RAW264.7 murine macrophages. All ulvan fractions showed no toxicity on RAW264.7 cells at concentrations below 100 µg mL-1 over 48 h. Secreted interleukin-10 and prostaglandin E2 demonstrated an anti-inflammatory effect by higher molecular weight ulvan fractions at 100 µg mL-1. To a lesser extent, these fractions also enhanced the LPS-induced inflammation through minor increases of IL-1ß and IL-6. This study confirms that ulvan from U. ohnoi has a mild in vitro immunomodulatory effect.


Assuntos
Macrófagos/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Ulva/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácido Glucurônico , Ácido Idurônico , Fatores Imunológicos/farmacologia , Interleucina-1beta , Interleucina-6 , Lipopolissacarídeos/efeitos adversos , Camundongos , Peso Molecular , Fragmentos de Peptídeos , Células RAW 264.7 , Ramnose , Alga Marinha/química , Xilose
7.
PLoS One ; 9(7): e101309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061756

RESUMO

Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models.


Assuntos
Biodegradação Ambiental , Metaloides , Purificação da Água , Austrália , Carvão Vegetal/química , Carvão Mineral/efeitos adversos , Humanos , Resíduos Industriais , Metais/química , Poluentes Químicos da Água/química
8.
PLoS One ; 9(2): e94706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919058

RESUMO

Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent.


Assuntos
Carvão Vegetal/química , Poluentes Ambientais/isolamento & purificação , Resíduos Industriais/análise , Ferro/química , Metaloides/isolamento & purificação , Metais/isolamento & purificação , Alga Marinha/química , Adsorção , Biodegradação Ambiental , Biomassa , Água Doce/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...